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ROTAIIONAL GAS DYNAMIC FLOW BY TRE INVERSE METHOD
Abstract

This paper concerns the use of an inverse method t; describe
two-dimensional gas dynamic flow fields of either rotational or
irrotational charaéﬁer. The inverse method provides a means of
solviﬁg the elliptic flow équation in the subsonic region, as well
as the hyperbolic equation of the supersonic region. This is ac-
complished by specifying Cauchy conditions such as centerline
veloclty or pressure as well as thei; derivatives normal tq the
centerline. The governing equations are then solved in the half
planevby inteérating in a direction normal to the streamlines.
Each streamline obtained by integrating the governing equations
may represent a soli& wall conépur in tﬁe inviscid ;ense. In this
paper the governing equations for inviéci& steady, axisymmetric
flow are to be éolvgd for several nozzle flow.fields. These
" equations are solved numerically in a transformed system of co-
ordinates representing the stream fu#ctién‘and a stretched axial
coordinate to permit maximum stability. The unique feature of the
method of solution is that it permits a unified treatment of the
subsonic (inciuding initiai conditions), the transonic and the

supérsonic portions of a rotational flow.

Background

Two-dimenéional calculations- for nozzles and wind tunnel have




usually treﬁted the flow in threé distinct regimes: the suﬁsonic,
the transonic, and the supersonic. While it is true that pertur-
bations in the supersonic f;aw do not affgct the subsonic flow,
unless a mach line intersects the sonic line, changes in the sub-
sonic flow dq—influence the supe;sonic flowl. "Since we have a
powerful tool for the solution of hyperbolic equations in the
Method of Characteristics (MOC), the supersonic flow has received
avgreat deal of attention. Optimuﬁ contours can now'be calculated
wﬁich account for a variety of aerothermodynamic effects.

The supefsonic flow field solutions by MOC calculations‘are
initiated in the transonic regions from an initial data surface
which is a Cauchy boundary condition (the value énd their deriva;
tives are kﬁowﬁ). At first, MOC calculations empléyed one-dimen-
sional results for this initial.data; nbﬁ; however, ;pecial tran-
sonic analyses have been derived reflecting in some degree ghe
two-dimensionél effects at the throa£2’3’4. These solutions are
éharactgrized by a perturbation analysis about M = 1 for small
radial velocitiés. The nozzle wall at the thrb;t is represented
by a finite series of terms not nécessarily matching the desired‘
contour, In general,.the series of solution is expanded in terms
of some function ;f (Rc/Rt) which causes copvergence difficulties
for R /R < 1. - ’ »

An improvement to the above methods was introduced by

Kliegel and Levine5 when, the wall contour is represented by a

series suggested by orthogonal torroidal coordinates. This




_approach involves an expansion of the wall contour in terms of

1/(RC/Rt + 1).. The solution obtained is essentially that of

Hall4 for large Rc/Rt’ however, it continues to predict realistic

results for Rc/Rt A~ 1. Recently Kliegel and Levine have concluded
that the series epplo&ed does not converge for higher approxima-
tionsG.

More recently a special form of the Cauchy nozzle flow
problem has been used with great success for calculating the tran-
sonic flow in nozzles7’8. The basis for this method is to specify
a centerliné function, and to assume the dependent variableé.aré‘
adequately represented by a finite series involving the independent
variables (3 or 4 terms). In this way, a solution for the nozzle_
wall over a region about the throat 1s directly obtainable without"
numerical integration. B& propér ;hoicg'pf‘the‘cenéerline Cauchy -

condition a throat contour and 1nle£ angle'may be reasonably

.gatched. It has been possible to calculate the flow field for

throat contours of very small radius of curvature (Rc/Rt < .25).
Unfortunately, this method is difficult to extend far into the

subsonic region with a resonable match of the desired wall contour.

. This is due to the finite number of terms carried in the series

representing the deperident variables, and the fact that in the
Cauchy approach, poinﬁs far from the centerline require high

order derivatives of the centerline function. Ultimately, of

'

course, all of the above methods do not allow the low subsonic -

-flow field and the method of mass generation,(initiél-conditions)




" - to influence tﬁe transonic and supersonic flow.

The principal reason for the failure of subsonic célcplations
is the lack of knoun boundary conditions for a fixed geometry.

The classical_method of solution of elliptic equations requires
‘boundary conditions of the Newman (derivatives of dependent vari-
ablés) or Dirichlet (magnitude of the dependent variables) type
over a closed region. The solution for the interior points is
effected by relaxation allowing the prescribed boundary conditions
to determine the interior values. In gas d&namic flows, often
these boundary conditions are.not-known; in fact, these conditions
are often the primary purpose of the analysis. This is espeéially
true of the transonic region boundary conditions which are useful
for MOC supersonic flow solutions. -

It has been argued on the basis ofuexperimentai observation
that the subsonic flow does not sig;ificéntly affect the transonic
flow. Whilé this may be a justifiable conclusion for the purposes
éf an initial data surface for MOC calculations, the matheﬁatical
consequences of this assumption for subsonic flow are no£ accept~
able. A comﬁlete transonic solution provides a Cauchy condition.
If this Cauchy condition is employed over any portion of a closed
boundary defined by the wall, the centerline, the initial plane,
and a reference line in the transonic region the prbblem is over-
specifiedg. To circumvent this problem the initial plane could be
left open. We know from experimental results that the method of

mass generétion at the initial plane does not significantly




influence'ghe transon}é region; therefore, it cannot be expécted'

. that the transonic solution could be projected back to a unique
initial condition unless the transonic solution ﬁés extremely
accurate, . - |

The only remaining option is to specify the initial condi-
tions and to'use only Newman-Dirichlet conditions at the transonic
reference line. However, unless the two boundary conditions are -
exactly éorfect, the interior flow cannot be expecied to relax to
a stable value because it is necessary to match the mass energy
and momentum exactly. |

At the present time there are two methods for eliminating
these mathematical difficulties: the inveése Cauchy Method and

-the Asymptomatic Time Me;hod. Fhe latter makes use of Crocco's

suggestionlo by considering the unsteady flow equations which are

hyperBolic with respect to timell’l2

. Under these conditions the .
Cauchy problem is proper ‘and the solution proceeds from an a;sumed-
initial condition for the entite flow fields to a steé@y state |
solution,.if one exists. This method has recently been shown
feasible for flows initiated from an infinite reservoir where the
initial velocities are zero. However, for flows originating from
a constant area duct, it is necessary to solve the unsteady flow
field many times to obtain the proper initial velocity in brder

to prevent instabilities., The large number of resuitant calcula-

tions influence the accuracy due to roundoff errors. However,

with the advent of faster computers which carry more significant




digité these problems may.not be significant.

The inverse Cauchy method cén be employed to solve the
governing equatioﬁs efficieﬁtly and accurately for an entire flow
field without simplifying assumptipnslz. Tﬁis is accomplished by
integrating in stéps of the stream function from an analytic,
sgooth Caucﬁy centerline condition. The solution obtained is

'.exact; however, thé streamlines may not represent the desired
shape for a given physical problem. This disadvantage limits the
use of this method to a design function unless substantial intera-

tion of the centerline function is permitted.
THE INVERSE METHOD

The inverse method allows éﬁe solution of ngzzle flow problems
in the subsonic, fransonic and supersonié regions, The Eethod
employes an as§umed centerline profile. This profile is of the
Cauchy type in that the values and the derivatives of the profile‘

-are kgown. For arbitrarily specified centerline data, the solution
of the governing flow equations may npt exist, and~if it does, it
may not depend continuously on the data14. However, if analygic -
; data is specified, the Cauchy-Kowalewsky theoremls indicates that
a solution exists in the neighborhood of the initial data. Inte-
gration is initiated at the centerline and is continued radially
in the half-plane indefinitely, providing instabilities do not
develop. In addit;on to the centerline data, end conditions may

be specified, but these may not be of the Cauchy type since these




would over-épecify thé solution unless they are imposed at i=,
However, boundary condition of Dirichlet or Newman type are always
permissible. This permits the postulation of ro;ational types of
flow in the éense that éntropy may vafy normal to the streamlines
. aue to non-uniformities‘in the combustion or due to tangential
velocities,

Recently, there has been some attempts to ;btain‘a mathe-
maticélly and physically consistent solution of the flow field
from mass generation surface through the supersonic ¥egion. This .
is necessary to accurately predict the heat transfer in nozzles
with rapidiy,converging inlets and low radius of.curvature throat
sections. The rapid convergent secfion provideé a minimum heat
path and tends to laminarize the bouﬁdary layer thus reducing heat.
transfer lossesl6. Another imﬁoréantvﬁeature in.ﬁhe\low su$sonic'
flow field is the flow behavior in the region adjacént to éhe
transition from the constant area combustion chamber and conver-
gent section, It has been_found that often boundary layer separa-
tion occurs in this concavé~region due to a locally unfavorable '
pre;sure grédignt17. . . -

‘ Ié is for these types of flow details tﬁat the inverse method
can be a practical design tool. It is possible to imput various
centerline velocities profiles and examine nozzle contours with
their assoclated velocity and pressure fields. By logical choice

a centerline velocity function can be derived which gives the

salient features of a desired nozzle flow field. In this manner,




the flow in the concave region can be studied and a nozzle profile
which minimizes the unfavorable pressure gradient in this area can
be determined. ‘

From a design point of view, it is possible to input center-
line velocity profiles and té obtain a mathematically exact solu- °
tion to the flow field, such that if a nozzle was constructed with
the céntour of a streamline thus generated, the exact solution for
the flow Qould be known for the envisioned flow. Furthefmore,
since the free stream is known, the boundary layer may be calcul-
ated so that the wall may bé appropriately displaced.

It should bé emphasized that the inverse method is not suited
to the detailed prediction of an e#isting nozzle contour. Most
nozzles are constructed from simple geometrical shapes such as
circular arcs and conical sections which, at their juncture, are
discontinuous in the higher order derivatives. .Since any center-
line veloéity must be an analytic function, streamline contouré

cannot be expected to be discontinuous.
THE ANALYSIS

In this section Fhe governing gas dynamic equations for
rota;ional (non-homentropic), steady flow willlbe presented.
Subsequently, these equations will be ‘transformed into the ¢ , £
plane which represents respectively, the streamline function and

" a stretched axial coordinate. ( See Figure 1)
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Continuity Equations

K %% = p'wr ) . (1)
%‘5 = -pur | . (2)

Momentum Equations

P _ 8u  wiu _ V.

ar p(u or + 9z T ) (3

oP w , wow T

2z (wartaz) < (4

D(vr) _  3(vr) - 9 - '

TR T 5gvE) = 0 . ) (5)

Process Equation

3.9 = 0 | - (6)
Energy Equation

q.VB =0 D

For the continuity equation a streamline function has been

introduced such that continuity is satisfied identically.

2y 3%y _ o
9rdz ' 9drdz 0 , B : . ®




The momentum equations are those of Euler for axisymmetric

flow and they are reduced from the Navier-Stokes equations by

neglecting the effects of viscosity. The process equation reflects

the conservation of entropy along streamlines but it allows varia-
tions normal to them. The energy equation is equi§alent to the
proceés equation and it assures constant total enthalpy along

streamlines.
Transformation of the Governing Equations

Since the equations are to be solved numerically, and it is
well known that the Cauchy boundary conditions can give rise to
pumerical instabilities if not properly handledls, it was

decided to transform the governing equations into a form which

. puts any geometry into a recténgular shape and which spaces the

network of interior points more finely in regions of the greatest
gradients of the dependent variables (Figure 1). The transforma-

tion is formally stated as:

r,z =P U,¢ - | (9)

- where

y

| ¢_= the‘stream func;idn of equations 1 and 2.

E = the stretched axial coordinate.
The tranéformation is best handled employing the Jacobian,
first’noting, however, the functional dependence of.  and £ on

(X3

r and z.

N




¥(r,z) ) (10)

<
f

£(z) (11)

o™y
"

The results of the Jacobian yield the paritals of the old

independent variables in terms of the new ones.

= o) (12)

== (g (13)

% = —(pru)”t (14)
where,

g=2E. 5 (15)

The momentum equation is derived below.

2 _2® 2y, 022

ar _ 8y ar T 3 3r _ oy PVF - (16)
P 3P udu
3 " PV o 59 = {3¢ pwr + w[
duq -v2
- pur a¢] < 17)

Collecting terms, and solving for 3P/3yyields,

12




2
B _ 1w, ¥ . (18)

The governing equations which apply in the transformed plane are-
given below where I' has been introduced as T' = vr, which is a
function of the circulation and most remain constant along a

streamline.

g—;- = 1/prw . e

2 . ‘ .

3? = u/wg . o ‘20)

3 L rowiu,. T2

P = F(y) pllY = constant on w‘- : (22

r = f(w) = constant on Y (23)

‘ u? + v + w? ‘

Ho(w) = cpT + 3 . (24),

. : :YT .
= X - L (42 2 23|V~
Po(w) P[1 ZYRTo(w) (u¢ + v + w j (25)

where F(¢), I'(y), and Ho(¢) are determined from the specified
initial conditions.
' The preceding equations are valid for rotational flow with

any distribution of tangentials velocity, entropy, and energy

13




14

which may be specified as the initial conditions. The boundary

conditions for the open boundary are:

£(0), u(y) =0

- ; w(y)

£ =0, 2

E=2z=dewl) Sug, u) 0 - (26)

=0, £=0;wE =y, uE =0

The centerline velocity L%} and the stretched axial coordinate

are defined only when‘a’particular problem is to be solved.
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NOZZLE FLOW

To solve a nozzle flow problem using the inverse technique, it
is required Fhat an analytic centerline velocity function be éhosen
which contains the salient features of the nozzle to be designed.
The centerline velocity function must also agree with the end
conditions wherever they are applied. A number of functions have

7,13,18

been devised by other authors however, for the present

study a function has been developed which has been found to be

descriptive of the entire nozzle.
- A .
= Mk = = - -
W,(z) =M Wclla 1+ E—{tanh[B(z z,)] + tanh[C(z zt)]} (27)

Some of the features of this function are given below:

wcl(-w) = wo =1-A . (28)

wc1(+w) = winf =1+A (29)

%) = = M% E

wcl(zt) 1:0 M ¢ . ﬂ ‘(30)
dw ’

ﬁ-lél(zt) = =A(B+0)/2 ' ‘ (31)

Thus, equation 27 insures that M* = 1 at 2z = z_, and that the

t
derivative is maximum and independent of z at the throat. Note
that z, does not define the plane of minimum area since the flow
properties vary in -the radial d#rectiqn. This function introduces
three arbitrary constants which are useful in specifying the
contraction ratio, €3 the nozzle inlet angle, 6;; and the radius

of curvature‘rafio, Rc/Rt' The constant A controls €. by

specifying the velocity at the initial plane. It also controls
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the maximum velocity reached in the supersonic po;tion of the

flow. The constants B and C control the radius of curvature ratio
for a given €. by spécifying the rate at which velocity changes
through the throat. Note that,ﬁ'cl 1s maximum and independent of z
at the throat. From experience it has been found that this
criteria forms the_streamlines into circular arcs at the throat;
tﬁereby permitting comparison_with existing experimental work.

“The nozzle inlet angle; ew, is determined by the streamline under
consideration and a-compli;ated function of A, B, and C.

Now that the centerline velocity function has been presented it
is necessary to discuss the choice of an axial stretching function.
Recall that the fundamental postulate of the inverse method is that
every point in the flow field depends continuously on the center-
line velocity function. In a numerical sense, as § is increased
more and moré of the centerline data is required. If the center-
line function één be speéified to infinity with*ébundary conditions -
along ¢ théﬁ it 1s possible to integfate without losing points at
_either ena of the axial coordin;te. Also, specifying the center-
1ine function to infinity prevents the propogation of disturbances
" from arbitrarily imposed boundary conditions, at a finite axial
location; Two features appear desirable for the stretching function.
First there should bé:appropriate spacing of points to allow maximum
accuracy at all axial locations. This requires the groﬁping of
points at the throat wﬂile minimizing the points where the dependent
variables are varying little, such as the chamber. Second, the

stretching function should facilitate the numerical compuéation by
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putting the physical coordinate z into a finite reglon.
These 6bject1ves were accomplished by specifying a stretched

coordinate § which was functionally similar to the centerline

velocity function. Figure 2 presents the relationship of Wﬁ.and

£ with z.

E=1+ Tanh[a(z-zt)]
E' = a sechZ[a(z~zt)l.= a £(2-€) | (32)

z = log(E/2 - E)/2a + z,

It is readily observed that,

Z2 = =0 ; §=0
z=2z ; E=1 (33)
z = 4> ; E=2

Initially some useful results were obtained aésuminé B = C.
Figure 3 presents the results for y = 1.40, RC/R£ = 0.40, and

€. = 4,0. To obtain these results, the coefficients of equation

(37) were ;séigned as follows:

ey -1

L. 1[_2 -
A=1-G[Y+1] .= 841
. c : ‘ T .
‘B=C=.975 - o (34)
z, = 5.0

‘Each étreamline can represent a nozzle wall fotr inviscid flow.

Increasing the stream function results in smaller Rc/Rt nozzle
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throats, ;nd it causes the lines of constant Mach number to
converge to a point near the minimum radius of the nozzle. Also
the axial locatién for the minimum radius of a streamline tends

" to. move upsfream, while the nozzle inlet angle becomes more severe
as the stream function increases. )

Figure 4 presents the wall (¥ = 100%) and centerline (¥ = 0)
pressures and Mach numbers as a function of axial position. The
wall pressure exhibits two interesting details for this case.
First, there is a relative maximum near the juncture of the convergént
and cylindrical portioné of the nozzle. This region has been
froublesome in the past in that the boundary layer often separates
“due to the adverse pressure gradientzo. This adverse p?essure
éradient becomes more severe with increasing ew. The value of the
static pressure becomes qlose to the stagnation pressure indicating
a virtual stagnation of the forward flow in somé cases. Second,
after the throat, there occurs another relative ma#imum. This
phenomenon has been noticed in connection with conical nozzles
where tﬁe exit'céne joins the throat curvature. In Figure 3, the
contour generated is analytic, therefore, the pressure rise must
be associated with the compression experienced when the gases
leave the throat curvature aﬂ& are partially stagnafed as they‘

- leave the circular arc and are forced into a more parallel flow.

The Mach curve reflects the pressure fluctuations, in addition, it
points to the large difference between the centerline and the wall

- Mach numbers. The one-dimensional-Qalué of Mach number, based on the

¥ = 100Z contour is presented as a reference. Note that this
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value femains bounded by the wall and centerline value.
Figure 5 repeats the general pattern of Figure 3 except

€.~ 9.0.  For this case,

A =0.930
B=C=0.760
z, = 5.0

This centerline veloéity function yields a nozzle in which,

\

= = °
Rc/Rt 0.875, and ew 50°.

For_é given €. and Rc/Rt’ the nozzle inlet, ew, may bé
tailored by varying the ratio of B/C in equation 27. To retain
tﬁe same contrgctién ratio and radius of curvature ratio, A as
well as (B + C) must be held constant. Figure 6 presents three
cases illu;tréting the effect of varying B/C from 1.0 to 1.5 and.

2.0. The coefficients for the velocity function are:

A= .931 ‘ € =9.0
[
B+ C =1.40 R /R = 1.15
zt =6.0 -

For Figure 5a the ratio B/C = 1.0 which results in a nozzle qf

1.50, the nozzle inlet angle reduced to

zew = 55°. When B/C

o, = 42°, 'When B/C = 2.0, the nozzle inlet angle was 6, = 32°.
Thus,once a particular nozzle is identified for €. and Rc/Rt the
inlet angle can be varied as desired b& varying B/C.

After many runs were made, it was possible to arrive at a
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RADIAL COORDINATE, r

4.0 | | |
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FIGURE 6. STREAMLINE DISTRIBUTION
FOR €.=9.0, Y=1.40, R /R, =1.15



generalized plot of Rc/Rt with respect to the coefficients of the
centerline velocity function. Since there exists an infinity of
nozzles corresponding to each particular velocity function
depending on the streamline the results presented in Figure 7
reflect the value of the stream function as well. With this plot
it is possible to choose the correct value of A(B + C) to yield the
appropriate throat radius of curvature. It éhould be noted that this
plot is approximéte since the throat contours are only approximately
circular. |

Figure 8 presents the discharge coefficients with respect to
Rc/Rt for some of the nozzles generated during the course of this
study. It should be noted that the radius of curvature is not’
sfrictly defingd for these studies, therefore, the best fit over an
arc near the throat was used. The results of Kliegle and Levine's
approximate theory based on a expansion about 1/(1 + Rc/Rt) are
presented for references. A

The value of CD was calculated for the pFesent case by
-determining the minimum wall radius (streamline radius). 1In
general,the two-dimensional solution yields a radius greater than
the predicted one-dimension;l value for the same mass flow.
Therefore, -

2

= R 1 p/Re 2p) (35)

The resultant CD as a function of R(':/Rt was found to be

essentially independent of 6 To prove this point several runs

w.
were mqde in which Rc/Rt was held constant however ew was varied

from 55° to 32° (Figure 6). Within the accuracy of assigning a
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valve toARc/Rt to the throat streamline contour, no variation in

CD was de£ected. Recently Back et al have gathered experimental

data over a rénge Rc/Rt and 6 ‘They concluded that except for Rc/Rt

in the order of 0.25 and less, the ew dependence to be very smalllg,
. Figures 9 and 10 present the results of a nozzle generated for

vy = 1.20. This specific heat ratio is more similar to rocket flows.

The results are for a case where,

y =1.20 y = 1.40

A= 0.843 R_/R_ = 0.54 R, /R, = 0.40

B =0,975 € = 4,0 € = 4,0
c . c

z = 5,00 o .=47° 8 = 46°
t w w

Thus, it is seen that reducing Y‘tends to deérease the RC[R
while retaining the saﬁe values of ew and €.-

Figures 11 and 12 present a noizle which is cémpariable to
one employed by Cuffel et 8121. In this ;ase some aftempt was
made to match the éxperimental nozz}e wall, within the limit imposed
by equation 27. Figure 11 illustrates the match obtained employing-
the standard centerline velocity function containing th;ee arbitrary
coefficients. From the tranmsonic regioﬁ upstream the match is very
close. Also plotted are a few of the resultant lines of constant
Mach number compared to experimental values. It'can be seen that the
experimental result show slightly greater cﬁrvature of the constant
Mach lines. Figure 12 presents the centerline and wall Mach number

in the region of the throat. The experimental results; again, show a

more drastic variation at the throat.
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The differences between experimental and analytical results
may bé aétributéble to a number ;f factors. First, thé contour
generated is smooth and analytic throughout, while the
experimental nozzle consists of straight lines and circular arcs.
Second, there can be some round off or numerical smoothing found
in any numerical difference method.

In this regard, no artificial or numerical viscosity was
employed in there calculations, however the method is an implicit
one which réquires approxiﬁately three iterations per stream
wise step. In view of the results compared to experimental ones
a higher order difference schéme may be desirable‘esbecially when
coupled with double precision operations. Third, tﬁére is the
problem of aécutate measurements in the transonic range. The
quoted accuracy of the experiments was + 0.2 psi based on a total
pressure of 70 psi. In the throat region this causes'the Mach
'ﬁumber to be + .02, It was interesting to note, however, that the .
discharge coefficient, CD’ for the experimental and analytical

case agreed quite well. (See Figure 8).
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STABILITY AND CONVERGENCE

Duriné the course of this investigation the?e were many
opportunities to test the convergence and s;ability of the present
method. Somé of the negative results obtained along the way to a
suecessful technique should be of practical interes£ to other
‘workers in.thé fig}d. When the problem was first formulated, no
axial stretching was attempiéz. Although some results were .
obtained, it was impossible to progress far into the 'Y direction
" pefore serious stabilities due to fhe lack of local éonvergence
developed, even though an implicit method was employed.
| The instab;lity was nucleated at the point where the
cyiindtical section began to blend into the convergence portion of
the ﬁozzle. Characteristically, the’bel;city in the region is
decreasing due to a locally adverse pressure gradiént. This
instability quickly spread upstream towards the initial conditions.‘
Downstream of this point, no computing difficulties were
.ehcountefed and smooth Aozzle profiles were always obtained at

the throat.

*

To circumvent these problems, the method of Lax—ﬁendroff22

was employed. " Now the essential function of the Lax-Wendroff
method is tozintroduce an artificial, numérical vigcosity (or
Qiffusion coefficient, or heat transfer coefficient). In so
doing, the form of the éoverning equations are changed from
elliptic to hyperbolic. Naturally, the stability of the new

. hyperbolic problem initiated from cauchy conditions has been




found to be stable. Consider the following equation:

'le + fx =0 . - ' (36)

The finite difference analog for central differences is,

ayt )

My 30171, 5

+ a0 (B ) G37)

.Employing the Lax-Wendroff method, the finite difference equation

'is written:

- o
C ATy g M2y g g p0)

, -1 .
@) Ty fi =0 (38)

Recasting the ‘above expression yields,

.

Aw’l(w T j) + (2Ax)'1(f

1,541 1+1,j'f1-1,j

= (ZAw)il(wi+I,j

2y W ) 39)

Therefore, a subtle change in the form of the diffgrence

equations produces a drastic change in the equation to be solved

‘. - ]
Ww +f =DV — (40,)
vhere,

D= szlew . (41)

35
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The magnitude of the artificial viscosity introduced is a
strong function of the stéﬁisizes taken., Figure 12 presents the
result of oné_calculaéion using thig approach which led to a
vastly improved stability. Further, the results.wefe smooth and
depended continuously on the initial conditions. Unfortunately
the results were grossly in error, showing a sﬁreadihg of Mach
lines from the centerline to the wall, instead of converging ét
the throat.

At this poin£ in the ;tudy, coérdinate stretching was
initiated. It was desired to place a large numﬁer of points in
the transonic region while reducing the number of  points in the
low subsonic region. This permitged taking derivatives over
physically large spaces where the velbcity was not changing
rapidly, while taking derivat{ves_over small regioﬁs in the

transonic region. Recall the stretching function given previously

£= 1+ tanh (a(z—zt)) (32)

This stretching function wofks well for nozzie flow patterns,
however, 6thers may be employed for different centerline velocity
functions. Increasing the coefficient, a, results in grouping‘
points at z = Z, . It is possible to take equal increments of §
from 0. to 2.0 while providing opéimum spacing of points in the
physical plane. This techniqug permitted the removal of all
artificial methods of convergencel Further it was possible'té
proceed well past the ¥ = 100% condition., Two limits to the stability
were noted. First, the coefficient a should be cﬁo;seﬁ in relation

to the centerline velocity function. In other words, the more severe
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-

. the gradients in wcl the greater a should be.. Sécond, when the

_ nozzle .inlet angle goes beyond 650, it is difficult to obtain
convergence because the axial velocity is no longer the dominant
variable in determining the mass flow rate. This means that the
centerline axial velocity bears little influence on the results in

"this region.

38
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CONCLUSIONS

The inve?se method provides a powe;ful tool for the design
of nozzles by calculating.the flow field by one uniform approach
from the surface of mass genera;ion to the nozzle exit. The
technique is not new, and has been applied tp:a variety of pro-
blems. In fact all of the approximate solutions for the transonic
range apply this <:oncept.2-8 For inviscid flow no approximation
in the governing equations need be made even for rotational flows.
Therefore, within the accuracy of the numerical technique the
solution is e#act. Unfortunately, it is not possible to match a
given nozzle wall contour completely with any finite term center-
line velocity profiie. However, since the shape of the subsonic ‘
portion is somewhat arbitrarily specified at the.preéent time,.
this need be no-real fault. A relativéiy simple centerline velo-
city function has been shown adequate to obtain any reasonable
combinati&n of e, ew’-Rc/Rt' .

Solutions obtainable by this -technique can be employed to
yield a free stream condition for studies .of such effects as

separation, transition, and laminarization. In addition, in-

teresting twb-dimensional geometrical effects such as the influence

of 0 , Rc/R

- and Ec on CD and the M = 1 condition can'be

t’
investigated.
The success of the present method is .largely due to the use

of'appropriate stretching functions for the axial coordinate so
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that the grid spacing can be(adjusted for optimum spacing. As
one would suspect the lowest subsonic region causes the most
difficultiés; This is because in the finite difference sense,
to advance' in Y requires more points of the centerline velocity: -
to adequately describe the subsonic point. Coarse grid spacing in
this region assures tbat the influence of ﬁg$z) over a large section
is brought to bear on the low. Mach number points. Concentrating
the grid in the transonic region permits only relatively local
effects to dominate and allows greater accuracy where velocity
gradients .are highest,

A fiﬁal word concerning the inverse technique applied té
mixed flows (subsonic, transonic and supersonic) ;eems apprépri—
ate. It»hay be of some concern that thé centerline velocity .

function is specified every where apriori. This means that the

- supersonic f16w-can indeed influence the subsonic flow. If this

is troublesome, recall that the streamline contour is not fixed
apriori but is calculated iteratively. In other words, it is

not surprising that a movement of the streamline contour should.

" effect both the subsonic and supersonic flow..
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NOMENCLATURE

;onstants in centerline velocity function
nozzle discharge coefficient

sﬁecific heat at constant pressure
orbitrary function

enthalpy

Mach number -

pressure

velocity vector

cylindrical coordinates

.gas constant

throat radius of curvature
throat radius
entropy

temperature

radial, tangential, and axial velocities

specific heat ratio

finite difference

contraction or expansion ratio
transformed axial coordinate
nozzle wall inlet angle
iteration number

3.14159...

density

4
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Y = stream function

Subscripts

¢ = throat curvature radius, contraction
cl = centerline
inf = infinity
o = stagnation conditions
t = throat valve
1-D = one dimensional
i = axial grid point designation

n = streamline grid point designation

Superscripts

- nondimensional value

' derivative with ‘respect to z
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